
DOI: http://doi.org/10.1002/2017GL074259
The competition between coastal trace metal fluxes and oceanic mixing from the 10Be/9Be ratio: Implications for sedimentary records

H. Wittmann1, F. von Blanckenburg1,2, M. Mohtadi3, M. Christl4, and A. Bernhardt2

1GFZ German Research Centre for Geosciences, Section 3.3 Earth Surface Geochemistry, Potsdam, Germany, 2Department of Geosciences, Freie Universität Berlin, Berlin, Germany, 3MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany, 4Laboratory of Ion Beam Physics, Department of Physics, ETH Zurich, Zurich, Switzerland

Abstract At an ocean margin site 37°S offshore Chile, we use the meteoric cosmogenic 10Be/9Be ratio to trace changes in terrestrial particulate composition due to exchange with seawater. We analyzed the marine authigenic phase in surface sediments along a coast-perpendicular transect and compared to samples from their riverine source. We find evidence for growth of authigenic rims through coprecipitation, not via reversible adsorption, that incorporate an open ocean 10Be/9Be signature from a deep water source only 30 km from the coast, overprinting terrestrial 10Be/9Be signatures. Together with increasing 10Be/9Be ratios, particulate-bound Fe concentrations increase, which we attribute to release of Fe-rich pore waters during boundary exchange in the sediment. The implications for the use of 10Be/9Be in sedimentary records for paleodenudation flux reconstructions are the following: in coast-proximal sites the authigenic record will likely preserve local riverine ratios unaffected by exchange with seawater, whereas sites beneath well-mixed seawater will preserve global flux signatures.

1. Introduction

Marine sediments provide continuous archives of the sedimentary trace metal flux from the continents to the world’s oceans. Among the many elemental and isotope ratio proxies in use to infer trace metal fluxes [Jeandel and Oelkers, 2015], the much overlooked ratio of the meteoric cosmogenic nuclide 10Be to the stable 9Be offers particular advantages: the seawater 10Be/9Be ratio combines a nuclide produced in the atmosphere at a relatively known rate with a stable isotope that records the unknown continental weathering and erosion flux. In seawater the 10Be/9Be ratio thus provides important information on, e.g., mixing of reactive trace metals. When measured on the authigenic phase of marine sediments, the 10Be/9Be ratio allows deriving the feedbacks between erosion, weathering, and climate in the geologic past [e.g., Willenbring and von Blanckenburg, 2010a; von Blanckenburg et al., 2015]. The 10Be/9Be ratio in authigenic phases is also used to constrain chronologies of marine sediments, of 10Be deposition rates, and variations of Earth’s magnetic field [e.g., Kusakabe and Ku, 1984; Segl et al., 1984; Bourlès et al., 1989a; Christl et al., 2003; Carcailliet et al., 2004; Knudsen et al., 2008; Ménabréaz et al., 2014; Simon et al., 2016a, 2017].

Essential to this present study is the new framework by von Blanckenburg and Bouchez [2014], which establishes the 10Be/9Be as a proxy of continental weathering and denudation that can be applied to marine archives. When 9Be is released from bedrock during weathering and introduced to the ocean in the dissolved form, it is mixed with dissolved meteoric 10Be, which is mainly delivered to the ocean through direct atmospheric deposition. As 9Be is particle reactive, formerly dissolved 10Be/9Be is preserved in marine authigenic phases as amorphous coating on sediment or is incorporated into Fe-Mn crusts. The main underlying assumption to the framework of von Blanckenburg and Bouchez [2014] is that dissolved Be isotopes are well mixed before being incorporated into marine authigenic phases. Despite the inherently different sources of both isotopes, homogenization by ocean gyres proceeds efficiently, with only low dispersion of dissolved 10Be/9Be [von Blanckenburg and Igel, 1999]. The sensitivity of the 10Be/9Be as a paleoproxy of continental denudation arises from the short residence time of Be in the ocean (0.2–1 kyr) [Kusakabe et al., 1990; Lao et al., 1992; von Blanckenburg et al., 1996] being shorter than ocean water mixing times. The short residence time is largely resulting from high scavenging intensities at ocean margins [Anderson et al., 1990]. When reaching the ocean floor, formerly scavenged 9Be might be partly released again into pore waters [Bourlès et al., 1989b] by so-called boundary exchange during early diagenetic reductive processes coupled to the iron redox cycle.
generally mirror the upland provenance (strata, downslope sediment transport dominates, and the surface sediment offshore central Chile from four multicorer (MUC) cores obtained during RV Sonne cruise SO-156. The four MUC sites together comprise a coast-parallel transect located at ~37°S (Figure 1), from site MUC-1 located just off the shelf edge at approximately 30 km from the Chilean coast to site MUC-4 located at a distance of 80 km from the coast. MUC-4 is located within the northward inclined subduction trench, whereas MUC sites 1–3 sites are located on the steep continental slope. Surface ocean currents prevailing at our sampling sites (Figure 1) comprise the northward directed coastal Peru-Chile Current extending to ~100 km offshore. Beneath this current in ~200 m water depth, the southward directed Guntner Undercurrent flows mainly over the outer shelf and the continental slope (Strub et al., 1998). The Guntner Undercurrent is presumably moving material southward before it sweeps sediment onto the continental slope and is also inferred to transport sediment from the Biobío River outlet to the more southern MUC sites (Bernhardt et al., 2016). Thus, the coastal Terra catchments comprise the main sediment source to the adjacent continental shelf probed by MUC samples, as along the steep slope segment, downslope sediment transport dominates, and the surface sediment and Holocene turbidites generally mirror the upland provenance (Lamy et al., 1998; Heberer et al., 2010).

2. Study Site, Sampling, and Origin of Terrigenous Sediments

At the Pacific coast between 37° and 38°S, sediment input into the ocean is mainly fluvial, as opposed to predominate aeolian input in northern Chile (Lamy et al., 1998). We therefore sampled detrital sediment from the Biobío, Lebu, and Yani Rivers (termed Terra 1–3; Table 1 and Figure 1) close to their coastal outlets, and marine surface sediment offshore central Chile from four multicorer (MUC) cores obtained during RV Sonne cruise SO-156 (Hebbeln and Cruise Participants, 2001). The four MUC sites together comprise a coast-parallel transect located at 37.4°S (Figure 1), from site MUC-1 located just off the shelf edge at approximately 30 km from the Chilean coast to site MUC-4 located at a distance of 80 km from the coast. MUC-4 is located within the northward inclined subduction trench, whereas MUC sites 1–3 sites are located on the steep continental slope. Surface ocean currents prevailing at our sampling sites (Figure 1) comprise the northward directed coastal Peru-Chile Current extending to ~100 km offshore. Beneath this current in ~200–300 m water depth, the southward directed Guntner Undercurrent flows mainly over the outer shelf and the continental slope (Strub et al., 1998). The Guntner Undercurrent is presumably moving material southward before it sweeps sediment onto the continental slope and is also inferred to transport sediment from the Biobío River outlet to the more southern MUC sites (Bernhardt et al., 2016). Thus, the coastal Terra catchments comprise the main sediment source to the adjacent continental shelf probed by MUC samples, as along the steep slope segment, downslope sediment transport dominates, and the surface sediment and Holocene turbidites generally mirror the upland provenance (Lamy et al., 1998; Heberer et al., 2010).

3. Methods

Authigenic phases such as amorphous Fe-Al oxyhydroxides and reactive Fe-Mn surfaces are the main carrier of meteoric 10Be in the ocean (Bourlès et al., 1989a). These so-called “reactive” phases can be obtained from sequential extractions. We performed the extraction method of Wittmann et al. (2012) that is based on a protocol developed for marine sediments (Tessier et al., 1979; Bourlès et al., 1989a; Brown et al., 1992b). All resulting concentrations of reactive Be (termed [9Be]reac and [10Be]reac) and those of major elements are calculated relative to the initial solid sample mass prior to extraction.

The sequential extraction steps were performed on several grain size fractions (Table 1), depending on sample recovery. Laser granulometry (Table S5) revealed that sieved grain size fractions are only apparent, as also much smaller particles were found that formed larger aggregated grains.

Extracted solutions were digested and purified for cosmogenic 10Be measurements according to established methods (see supporting information). Using accelerator mass spectrometry measurements (Christl et al.,...
Table 1. Sample Characteristics and Mineralogical Composition of Terrestrial and Marine Sediments

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>River or Core Label</th>
<th>Latitude (°S)</th>
<th>Longitude (°W)</th>
<th>Terrestrial Drainage Area (km²)</th>
<th>Sediment Load From In Situ ¹⁰⁷Be (Mt/yr)</th>
<th>Water Depth (m)</th>
<th>Distance From Coast (km)</th>
<th>Grain Size Analyzed (μm)</th>
<th>Quartz</th>
<th>Plagioclase</th>
<th>Amphibole</th>
<th>Kaolinite</th>
<th>Muscovite and Illite</th>
<th>Chlorite</th>
<th>Amorphous</th>
<th>Clinoptilolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra-1</td>
<td>Bíobío</td>
<td>36.81</td>
<td>73.17</td>
<td>6440</td>
<td>0.75</td>
<td>-</td>
<td>0</td>
<td><63</td>
<td>83</td>
<td>56.9</td>
<td>7.8</td>
<td>13.3</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Terra-2</td>
<td>Lebu</td>
<td>37.54</td>
<td>73.38</td>
<td>798</td>
<td>0.052</td>
<td>-</td>
<td>0</td>
<td><63</td>
<td>20.6</td>
<td>23.6</td>
<td>n.d.</td>
<td>30.5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Terra-3</td>
<td>Yani</td>
<td>37.42</td>
<td>73.53</td>
<td>114</td>
<td>0.047</td>
<td>-</td>
<td>0</td>
<td><63</td>
<td>21.0</td>
<td>39.7</td>
<td>n.d.</td>
<td>12.2</td>
<td>27.1</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Terra</td>
<td>XRD data weighed for sediment load measured by in situ ¹⁰⁷Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td>539</td>
<td>-</td>
<td>139</td>
<td>13.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>MUC-1</td>
<td>GeoB7171</td>
<td>37.40</td>
<td>73.95</td>
<td>-</td>
<td>-</td>
<td>1386</td>
<td>30</td>
<td><63</td>
<td>89</td>
<td>38.7</td>
<td><1.6</td>
<td>27.9</td>
<td>13.9</td>
<td><1.7</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Note: n.d. = not determined; d.l. = close to detection limit.

Table 1 from Wittmann et al. (2017).
2013], we obtained \([^{10}\text{Be}]_{\text{reac}}\). The concentrations of the reactive fraction of the major elements and \([^{9}\text{Be}]_{\text{reac}}\) were measured with inductively coupled plasma optical emission spectroscopy.

To compare terrigenous to marine sediment compositions and assess the terrigenous sediment loads from the Terra catchments to MUC sites, we carried out XRD (X-ray diffraction) on postleach silicate residuals of different apparent grain sizes and derived sediment loads for the terrestrial samples from in situ \(^{10}\text{Be}\)-derived denudation rates.

4. Results

4.1. Mineralogical Sediment Composition and Terrigenous Sediment Loads

Given the different lithologies of Terra catchments [Melnick and Echtler, 2006] (Figure S1) and their difference in sediment export to the ocean (Table 1), the proportions at which the terrestrial samples mix before arriving at the MUC sampling points are unknown. We hence weighed the mineralogical composition and Be results (section 4.2) for their in situ \(^{10}\text{Be}\)-derived sediment load (Table 1). The Biobío River has the largest sediment export to the shelf, outweighing the other two rivers in drainage area and sediment export; hence, this “load-weighed” mineralogical composition is mainly dominated by Biobío sediment. Some variations are present for plagioclase and kaolinite that most likely depend on the variable regional geology of each basin, but the overall similarity in mineralogical composition of the terrigenous and marine sediment generally supports previous provenance work [Lamy et al., 1998; Heberer et al., 2010].

Terrestrial denudation rates from in situ cosmogenic \(^{10}\text{Be}\) used for load-weighing range from 65 t/km\(^2\)/yr for the Lebu to 429 t/km\(^2\)/yr for the Yani River basin (Tables 1 and S4). Such variations spanning 2 orders of magnitude in denudation could be caused by variable erodibility depending on lithology (see Figure S1) but agree broadly with elsewhere reported values for this region [Carretier et al., 2014].

4.2. Elemental and Isotopic Results

4.2.1. Concentration Results

Differences in \([^{10}\text{Be}]_{\text{reac}}\), \([^{9}\text{Be}]_{\text{reac}}\), and major reactive elemental concentrations between replicate samples amount to less than 10% (Tables 2 and S1) and are within the reported analytical repeatability for optical emission spectroscopy and accelerator mass spectrometry measurements [Wittmann et al., 2015]. The two apparent grain size fractions of MUC-1 and MUC-3 yield differences in some elemental concentrations of up to 40% (Table S3), which is most likely caused by the presence of varying proportions of smaller aggregated particles that may have slightly different mineralogical composition. Concentrations of most major reactive elements increase from the terrestrial to the marine realm (from highest to lowest relative increase: \([\text{Ti}]_{\text{reac}} > [\text{Al}]_{\text{reac}} > [\text{Fe}]_{\text{reac}} > [\text{K}]_{\text{reac}}\); Table S3).

We also calculated “load-weighed” \([^{10}\text{Be}]_{\text{reac}}\) and \([^{9}\text{Be}]_{\text{reac}}\) concentrations for the three “Terra” basins (Figure 2 and Table 2) that are closest to the values for the large Biobío River (Table 2).

A twentyfold increase in \([^{10}\text{Be}]_{\text{reac}}\) is observed from the terrestrial (load-weighed \(0.44 \times 10^8\) at/g) to the marine realm (mean \(9.5 \times 10^8\) at/g). For \([^{9}\text{Be}]_{\text{reac}}\) a 1.5-fold increase from a load-weighed concentration of
When forming the ratio of 10Be and 9Be reactive concentrations (10Be/9Be)$_{\text{reac}}$, the differences observed for both isotopes are uniform.

4.2.2. Isotope and Elemental Ratio Results

Between the coast and the MUC-1 sampling site, 10Be/9Be of marine surface sediment, surface-layer scrapes of Mn crusts, and dissolved 10Be (Figure 2c and Table 2). Importantly, the latter ratio is still lower than open Pacific Ocean values (see below).

When we calculate the quotient of the net increases of $[^{10}$Be$]$$_{\text{reac}}$ (9.03 × 108 at/g) and $[^{9}$Be$]$$_{\text{reac}}$ (0.83 × 1016 at/g), respectively (section 4.2.1), a (10Be/9Be)$_{\text{reac}}$ of 2.2(±2.5, 1 SD) × 10$^{-8}$ results. This ratio is similar to open Pacific Ocean (10Be/9Be)$_{\text{diss}}$ of marine surface sediment, surface-layer scrapes of Mn crusts, and dissolved (10Be/9Be)$_{\text{diss}}$, with a well-mixed open ocean value of ~1.2 × 10$^{-7}$ (Figure 2c).

To assess whether Fe-Al oxyhydroxides are indeed the main carrier of Be, we normalized the concentrations of 9Be$_{\text{reac}}$ to Fe$_{\text{reac}}$ resulting in (9Be/Fe)$_{\text{reac}}$. This normalization is reasonable as reactive Fe is affected similarly during the sequential extraction as Be [Helz and Valette-Silver, 1992], and Fe supplies the largest mass fraction of the sequentially extracted phases (Table S3). We find that (9Be/Fe)$_{\text{reac}}$ does not significantly vary between different grain sizes, nor do they change from weighed river data to ocean (Figure 2d and Table S2).

Table 2. 9Be and 10Be Concentrations and 10Be/9Be Ratios for Reactive (Sequentially Extracted) Phases

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Grain Size Analyzedd (μm)</th>
<th>Commentsc</th>
<th>$[^9$Be$]{\text{reac}}$ (1016 at/g${\text{solid}}$)</th>
<th>$[^{10}$Be$]{\text{reac}}$ (1016 at/g${\text{solid}}$)</th>
<th>10Be/9Be$_{\text{reac}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra-1 (Biobio)</td>
<td><63</td>
<td>Replicate 1</td>
<td>1.563 ± 0.078</td>
<td>0.448 ± 0.015</td>
<td>0.287 ± 0.017</td>
</tr>
<tr>
<td></td>
<td><63</td>
<td>Replicate 2</td>
<td>1.630 ± 0.081</td>
<td>0.411 ± 0.014</td>
<td>0.252 ± 0.015</td>
</tr>
<tr>
<td>Terra-2 (Lebu)</td>
<td><63</td>
<td></td>
<td>4.092 ± 0.205</td>
<td>1.451 ± 0.052</td>
<td>0.355 ± 0.022</td>
</tr>
<tr>
<td>Terra-3 (Yani)</td>
<td><63</td>
<td></td>
<td>2.790 ± 0.139</td>
<td>1.080 ± 0.042</td>
<td>0.387 ± 0.025</td>
</tr>
<tr>
<td>Terra: Weighted for sediment load measured by in situ 10Be9</td>
<td></td>
<td></td>
<td>1.745 ± 0.085</td>
<td>0.440 ± 0.016</td>
<td>0.252 ± 0.015</td>
</tr>
<tr>
<td>MUC-1</td>
<td><63</td>
<td></td>
<td>2.155 ± 0.057</td>
<td>0.790 ± 0.026</td>
<td>3.60 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>125–250</td>
<td></td>
<td>2.86 ± 0.15</td>
<td>11.10 ± 0.33</td>
<td>3.74 ± 0.22</td>
</tr>
<tr>
<td></td>
<td><63d</td>
<td></td>
<td>2.36 ± 0.12</td>
<td>7.08 ± 0.22</td>
<td>3.00 ± 0.18</td>
</tr>
<tr>
<td>MUC-2</td>
<td>250–500d</td>
<td></td>
<td>2.66 ± 0.13</td>
<td>11.38 ± 0.57</td>
<td>4.27 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>125–250</td>
<td></td>
<td>2.80 ± 0.14</td>
<td>11.58 ± 0.58</td>
<td>4.14 ± 0.29</td>
</tr>
<tr>
<td></td>
<td><63d</td>
<td></td>
<td>2.36 ± 0.12</td>
<td>7.08 ± 0.22</td>
<td>3.00 ± 0.18</td>
</tr>
<tr>
<td>MUC-3</td>
<td>125–250</td>
<td></td>
<td>2.89 ± 0.14</td>
<td>12.13 ± 0.61</td>
<td>4.20 ± 0.30</td>
</tr>
<tr>
<td></td>
<td><63d</td>
<td></td>
<td>2.49 ± 0.12</td>
<td>9.15 ± 0.29</td>
<td>3.68 ± 0.22</td>
</tr>
<tr>
<td>MUC-4</td>
<td>125–250</td>
<td></td>
<td>2.72 ± 0.14</td>
<td>7.93 ± 0.40</td>
<td>2.92 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>125–250</td>
<td></td>
<td>2.52 ± 0.13</td>
<td>7.45 ± 0.37</td>
<td>2.96 ± 0.21</td>
</tr>
<tr>
<td>MUC: Average values ± 1 SD</td>
<td></td>
<td></td>
<td>2.60 ± 0.25</td>
<td>9.52 ± 0.20</td>
<td>3.61 ± 0.54</td>
</tr>
</tbody>
</table>

dNote that we provide separate results for the two performed leaching steps in the supporting information; “reac” phases provide the sum of the “am-ox” (1 M HCl-leached amorphous oxides) and the “x-ox” (hydroxylamine-leached crystalline oxides) steps. Prior to analysis negligible presence of biogenic components and carbonates was validated (see supporting information) as these components may change sedimentary meteoric 10Be concentrations [Southon et al., 1987; Lal et al., 2006].

cApparent grain sizes due to secondary particle formation revealed by laser granulometry data (supporting information).

bReplicate (for 9Be and 10Be) performed on newly weighed sample splits. For most terrestrial samples, am-ox and x-ox steps of sequential extraction (see supporting information) were separately analyzed for 9Be (but not for 10Be). These separate results are given in supporting information Table S1. Given here are summed reactive (am-ox + x-ox) results.

bAll 9Be analyses except Terra-1 and MUC-2 are averages from two replicate leaches performed on newly weighed sample splits. Uncertainty is 1 SD of two replicates or 5% analytical uncertainty for Terra-1 and MUC-2.

aUncertainty contains analytical uncertainty from AMS measurement, and sample ratio was corrected using a mean long-term blank 9Be/10Be ratio of 2.2(±2.5, 1 SD) × 10$^{-8}$ (Figure 2 and Table 2). The resulting (10Be/9Be)$_{\text{diss}}$ with a well-mixed open ocean value of ~1.2 × 10$^{-7}$ (Figure 2c).

fProcessed in 2015 by different operator.

iCoarser grain size analyzed due to negligible recovery for finer grain sizes (XRD performed on different grain size).
5. Discussion

5.1. Preservation of a Terrestrial Phase in Marine Surface Sediments

Our new data for $^{10}\text{Be}_{\text{reac}}$, $^{9}\text{Be}_{\text{reac}}$, and $(^{10}\text{Be}/^{9}\text{Be})_{\text{reac}}$ show that in this near-coastal setting, measured $(^{10}\text{Be}/^{9}\text{Be})_{\text{reac}}$ of authigenic phases contained in marine surface sediments have not reached open ocean values relative to their terrestrial source. That marginal sites show lower $^{10}\text{Be}/^{9}\text{Be}$ than their adjacent open ocean counterparts has been observed in the Baffin Bay [Simon et al., 2016b] and at sites surrounding Papua New Guinea [Ménabréaz et al., 2012, 2014], and from a Mediterranean marginal site [Simon et al., 2017] (for summary of this published data, see Table S2).

Interestingly, we find that quotient of the net increases of $^{10}\text{Be}_{\text{reac}}$ to $^{9}\text{Be}_{\text{reac}}$ from rivers to ocean is in the same order as open ocean reactive and dissolved $^{10}\text{Be}/^{9}\text{Be}$. This means that the authigenic phases in marine surface sediment preserve a terrestrial phase and another, ocean-derived phase was later superimposed (Figure 3). The $(^{10}\text{Be}/^{9}\text{Be})_{\text{reac}}$ of MUC samples (3.6×10^{-8}) hence is a mixture of the $(^{10}\text{Be}/^{9}\text{Be})_{\text{reac}}$ of Terra samples (comprising ratios of 0.25×10^{-8}) and an open-ocean phase with the typical Pacific open ocean ratio ($=1.1 \times 10^{-7}$).

These observations provide evidence that the authigenic phases in our MUC samples have formed under influence of deep ocean seawater at a distance of only 30 km from the coast (given that all MUC sites have the same $(^{10}\text{Be}/^{9}\text{Be})_{\text{reac}}$ and relative increases in Be concentrations, respectively). The source is likely Pacific...
Deep Water (PDW) with deep Pacific \((^{10}\text{Be}/^{9}\text{Be})_{\text{diss}}\) [Kusakabe et al., 1987; Xu, 1994]. Note that in case of a deep water source, scavenging does not change the \(^{10}\text{Be}/^{9}\text{Be}\) prevailing in seawater as both \(^{10}\text{Be}\) and \(^{9}\text{Be}\) are scavenged to the same degree [von Blanckenburg and Igel, 1999]. Only if isotope ratios differ regionally and scavenging efficiencies differ too, the dissolved \(^{10}\text{Be}/^{9}\text{Be}\) ratios will be changed [von Blanckenburg and Bouchez, 2014].

5.2. Evidence for Diagenetic Release of Metals and Their Incorporation Into Reactive Rims

One possibility for the increase in \([\text{Be}]_{\text{react}}\) in marine sediment samples is further adsorption of both Be isotopes from seawater. Solid-water partition coefficients \(\log K_d\) of \(^{9}\text{Be}\) are similar in rivers and seawater at about 4.9 to 5.5 compiled from studies using solely natural samples (excluding pure minerals and experimental approaches, e.g., Aldahan et al. [1999]), natural pH ranges of 6–8 and were within Be solubility ranges [Chase et al., 2002; Luo and Ku, 2004; Wittmann et al., 2015]. Indeed, when calculating sample-specific \(K_d\) from the increase in \([^{9}\text{Be}]_{\text{react}}\) and \([^{10}\text{Be}]_{\text{react}}\) in MUC samples and deep Pacific dissolved \(^{10}\text{Be}\) concentrations of 2000 at/g and \(^{9}\text{Be}\) of 30 pM, respectively [Kusakabe et al., 1987], we obtain a \(K_d\) of exactly 5.6 for both isotopes. However, we observe a simultaneous increase in reactive Fe in roughly the same proportion as \(^{9}\text{Be}\), resulting in uniform \((^{9}\text{Be}/\text{Fe})_{\text{react}}\) from the terrestrial source to MUC sites (Figure 2d). Due to their reactive nature, only a small fraction of \(^{9}\text{Be}\) and Fe are available in the dissolved form in seawater [Measures and Edmond, 1982; Brown et al., 1992a; Johnson et al., 1997]. Further, the mass ratio of Fe/Be in seawater is \(-1 \times 10^2\) (calculated using a mean oceanic dissolved Fe concentration of 0.5 pM [Achterberg et al., 2001]), whereas that found in MUC samples is \(-1 \times 10^5\) (Table S3). We thus discount adsorption as a significant process. Rather, a likely source of the high required amounts of dissolved Fe to be incorporated into marine authigenic phases is its release from pore waters during early diagenesis [Canfield, 1989; Elrod et al., 2004; Staubwasser et al., 2006]. Reductive dissolution of Fe-oxyhydroxides would release the trace metals coprecipitated with them, among them Be.

This possibility of pore water Fe release together with Be with an open-ocean \((^{10}\text{Be}/^{9}\text{Be})_{\text{diss}}\) ratio suggests that the formation of authigenic phases occurs via coprecipitation as reactive rims. We rule out the possibility of reversible adsorption, because adsorption cannot explain the simultaneous increase in reactive Fe and \(^{9}\text{Be}\) to yield uniform \((^{9}\text{Be}/\text{Fe})_{\text{react}}\) ratios. Given that diagenetic release is a large source of dissolved Fe [Van Cappellen and Wang, 1996], uniform \((^{9}\text{Be}/\text{Fe})_{\text{react}}\) ratios from the terrestrial to the oceanic environment can only be facilitated if the phase incorporating Fe and \(^{9}\text{Be}\) grows in mass (Table S3), which is enabled through the formation of reactive rims during coprecipitation.

To summarize, by chemically extracting authigenic phases from marine surface sediment, we integrated over the “inner layer” of a reaction rim formed under terrestrial conditions, and the “outer layer” of the reaction rim that has formed on top of the inner layer in the marine realm. This outer layer must have formed near the

Figure 3. (a) Two-layer rim formation, the inner one preserving the sedimentary authigenic \(^{10}\text{Be}/^{9}\text{Be}\) characteristic of continental erosion and the outer one preserving marine authigenic \(^{10}\text{Be}/^{9}\text{Be}\) ratios. Sequential extractions removes both layers, resulting in a mixed (measured) \(^{10}\text{Be}/^{9}\text{Be}\) ratio. (b) Setting the \(^{10}\text{Be}/^{9}\text{Be}\) ratio in coastal-proximal sites affected by deep water masses. Boundary exchange releases dissolved Fe and \(^{9}\text{Be}\) into the sediment that are, together with a deep open ocean-\((^{10}\text{Be}/^{9}\text{Be})_{\text{react}}\), incorporated into authigenic phases.
ocean floor where high dissolved Fe and 9Be concentrations from pore water expulsion prevail, and under the influence of a deep water source, with a characteristic deep ocean 10Be/9Be (Figure 3).

6. Implications

Our most important finding is that cosmogenic 10Be/9Be ratios in the authigenic phase of marine sediment from near-coastal areas preserve isotope ratios set during continental erosion and riverine transport but onto these are superimposed ocean ratios set under marine conditions. We provide evidence that these phases are formed through coprecipitation, and not via reversible adsorption. Sequential leaching methods do not differentiate between these two phases and thus cannot resolve terrestrial versus oceanic sources. Besides the dissolved flux, desorption from terrigenous particles was speculated to present one of two net sources of 9Be to seawater [von Blanckenburg and Bouchez, 2014; von Blanckenburg et al., 2015]. However, the increase in concentration in both Be isotopes in the sediment suggests that at this active continental margin setting the “boundary exchange” mechanism is one in which there is net loss of this reactive metal to the sediment, in line with the original “boundary scavenging” concept [Anderson et al., 1990].

Our study further has implications for the paleoflux information that authigenic 10Be/9Be records at a given ocean site will yield, provided that changing boundary conditions like sea level or oceanic circulation variations can be accounted for. In coast-proximal sites that are affected neither by deeper water nor by narrow boundary currents, the authigenic record may be dominated by the terrigenous source and thus preserves the riverine ratios unaffected by exchange with seawater. The authigenic phase of sediment will thus be a direct recorder of terrigenous denudation of the adjacent river catchments.

Open ocean sites, in contrast, are located on the ocean side of boundary currents where homogenization has occurred [Igel and von Blanckenburg, 1999; von Blanckenburg and Igel, 1999]. There, 10Be/9Be ratios will record ocean-basin wide weathering and denudation fluxes [Wilenbring and von Blanckenburg, 2010b; von Blanckenburg et al., 2015] and global changes in cosmic ray production as modulated by magnetic field strength [Christi et al., 2003; Carcaillet et al., 2004; Knudsen et al., 2008; Simon et al., 2016a].

The continental margin site studied here is an intermediate one as it is positioned in the transition zone between terrigenous and open ocean-dominated fluxes. That this transition is located at only 30 km from the coast is attributed to the narrow eastern Pacific boundary current and influence of PDW seawater. A similar documented transitional site is the Baffin Bay at which 10Be/9Be shifts in a time-dependent manner between open ocean ratios and meltwater discharge [Simon et al., 2016b]. These marginal sites are probably best suited to decipher the hitherto elusive boundary exchange and the processes that contribute to it today, and back through time.

References

Bernhardt, A., D. Hebbelin, M. Regenberg, A. Lückge, and M. R. Strecker (2016), Shellfall sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin, Geology, 44(4), 295–298.

